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Abstract

In this paper the problem of a cylindrical crack located in a functionally graded material (FGM) interlayer between
two coaxial elastic dissimilar homogeneous cylinders and subjected to a torsional impact loading is considered. The
shear modulus and the mass density of the FGM interlayer are assumed to vary continuously between those of the two
coaxial cylinders. This mixed boundary value problem is first reduced to a singular integral equation with a Cauchy type
kernel in the Laplace domain by applying Laplace and Fourier integral transforms. The singular integral equation is
then solved numerically and the dynamic stress intensity factor (DSIF) is also obtained by a numerical Laplace in-
version technique. The DSIF is found to rise rapidly to a peak and then reduce and tend to the static value almost
without oscillation. The influences of the crack location, the FGM interlayer thickness and the relative magnitudes of
the adjoining material properties are examined. It is found among others that, by increasing the FGM gradient, the
DSIF can be greatly reduced. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The interests in functionally graded materials (FGMs) research are growing rapidly in recent years. This
is because the FGMs have many advantages, such as their high temperature and corrosion resistance, and
their reductions in residual and thermal stresses. However, this kind of materials also brings up new
problems. The foremost challenge is that the FGMs are inhomogeneous, with their material properties
varying continuously. This inhomogeneity has a great influence on their mechanical behaviors. To face the
challenge, considerable work has been embarked in recent years. These works can to some extent be seen
from the review articles of Erdogan (1995), Tanigawa (1995) and Duan et al. (2001). It will be recognized
from these reviews that only a few articles were devoted to the dynamic fracture mechanics of FGMs.
Among these limited studies, Atkinson (1975) once considered crack propagation in media with spatially
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varying elastic moduli, and Wang and Meguid (1994/1995) treated a finite crack propagating in a inho-
mogeneous interlayer under an antiplane loading. Wang et al. (1998), on the other hand, carried out an
analysis for a composite material with a material inhomogeneity in the thickness direction. In this process
the continuously varying material is divided into a number of strips where each strip was assumed to be
homogeneous. Babaei and Lukasiwicz (1998) studied a finite crack subjected to an antiplane shear impact
load in an interlayer of a FGM between two dissimilar homogeneous bonding materials, while Li and co-
workers (Li and Zou, 1999a; Li et al., 1999b) considered the dynamic responses of an FGM and an or-
thotropic FGM with a penny-shaped crack subjected to torsional impact.

In the present paper the problem of a cylindrical crack located in the FGM interlayer between two
coaxial dissimilar homogeneous cylinders and subjected to a torsional impact loading is considered. We
suppose that the two elastic homogeneous dissimilar cylinders are perfectly bonded through an elastic
FGM layer and the shear modulus and the mass density of the FGM interlayer vary continuously between
those of the two coaxial dissimilar homogeneous cylinders. We also assume that the external cylinder is
infinite in radius. Although this is an idealized model for the purpose of obtaining an analytical solution, it
actually has a background in the engineering practice. For example, in fiber-reinforced composite materials,
there could be a thin inhomogeneous layer between the fiber and matrix. This interphase is formed either
from the chemical reactions between the fiber and matrix materials or the use of a protective coating on the
fiber during processing. It is the interphase that takes the role of insuring the fiber and matrix to coope-
ratively perform the function of the composite under the external load. Many studies (Achenbach and
Zhu, 1989; Jasiuk and Kouider, 1993; Wacker et al., 1998; Ding and Weng, 1999) have shown that the
interphase, either homogeneous or inhomogeneous, could significantly influence the overall mechanical
behavior of the fiber-reinforced composites. However, the effect of the inhomogeneous interphase on the
dynamic fracture behavior of a composite material has not been reported.

To solve the present problem we use the Laplace and Fourier integral transforms (Sneddon, 1972) and
introduce a dislocation density function. The mixed boundary value problem is first reduced to a singular
integral equation with a Cauchy type kernel in the Laplace domain. The resulting singular integral equation
is then solved numerically following the method developed by Erdogan (1975). A numerical Laplace in-
version technique described by Miller and Guy (1966) is subsequently used to obtain the dynamic stress
intensity factor (DSIF) in the physical domain. The computational results are shown graphically to reveal
the influences of the relative magnitudes of the adjoining material properties, the crack location, and the
FGM interlayer thickness on the DSIF.

2. Formulation of the problem

As shown in Fig. 1, suppose that two elastic homogeneous dissimilar cylinders (material-I and material-
III) are perfectly bonded through an elastic FGM layer (material-II). Material-I and material-III are co-
axial and infinitely long and their material properties are constant and denoted by p,, p, and ps, p;, Where u
is the shear modulus and p is the mass density. Material-I1I is further assumed to be infinite in the radial
direction. The FGM interfacial layer has the thickness of ¢ — a and its material properties are assumed to
vary as

o (r) = por™, pa(r) = por”. (1)

From the continuity conditions of the material properties at the interfaces » = @ and r = ¢, i.e.
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Fig. 1. A cylindrical crack in an FGM interlayer.

the parameters u,, p,, m and n can be determined as

to = iy /a", po = p1/a’,
m = In(us/w)/1In(c/a), 3)
n=1n(ps/py)/In(c/a).

Assume that a cylindrical crack of radius b and length 2/is located in the FGM interlayer (Fig. 1). Here,
we only consider the Mode III crack problem. For simplicity, we assume that the crack surfaces are
subjected to axisymmetric torsional impact loading t(z)H (¢), where H (¢) is the Heaviside unit step function,
and the longitudinal shear stress t(z) is symmetric about z = 0 plane. Considering the superposition theory
of linear fracture mechanics, this loading condition yields the same stress intensity factor as an external
torsional uniform stress imposed on the body.

Under present loading condition, by the cylindrical polar coordinates (r,6,z), only the displacement
(ug); = wi(r,z,t) are nonvanishing, where subscripts i = 1,2, 3 refer to materials I, II and III, respectively,
and ¢ represents the time. The nonvanishing stress components 74, and 1,4 are as follows:

), i=1,2,3. 4)

The governing equations of motion give

ow; 0 ( w;

(TBZ)i = MiE? (Trﬁ)i = :uira "

?*w; 1 ow; Wi o*w; _ b *w;

or Ty or 2 o TG i=13 (5)

Pw, 14+mow, 14+m N 0w, Py 0*wy
—_— W = .
or? r or 2 2T o2 Uor™ " OF

The continuity conditions at the interfaces are

Wl(aiaz, t) = WZ(a+aZ) t)a —00 <z <00, (7)
(Tre)l(a_7z7 t) = (Tr9)2(a+7zv t)) —00 <z < 00, (8)

wy(c™,z, 1) = wy(ct,z,1), —o0 <z< o0, 9)
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(t10),(c™,2,8) = (1,0)5(c,2,1), —o00<z< o0, (10)

(t10)5(b™,2,1) = (T19),(b",2,1), —00<z< o0. (11)
The boundary conditions at the crack surfaces are as follows:

wa(bt,z,0) = wy(b™,z,8), 1<]z] < o0 (12)

(t1,0),(b,z,8) = —t(2)H(t), —I1<z<I, (13)

3. Displacements and stresses in the Laplace domain

Introducing the Laplace transform and defining
wirzp) = [ wirznear, (14)
0

Egs. (5) and (6) can be converted into

Fw: 1ows wr 0w pp?
S Lp—t=""w, i=1,3 15
orr r or + 022 W Vi 1553 (15)

Pwy; 14+mdw; 1+4m ows  pp”

. _ 1
or? r o or 2 + 0z  pgrm" (16)
Further, introducing the pair of Fourier transforms,
Hrtp) = [ wilnzpetds (17)
1 [~ ey
Wirzp) =5 [ W Lpe L (18)
the Egs. (15) and (16) can be rewritten as
Vi(r,Cp) | 10Vi(r,{p) pip” | 1
3 6y : i\"'sy 5 - — :1 1
0zt [C o +r2] Vi(r,(p) =0, i=1,3, (19)
s (r, L, 1+ m oW (r, 1+m
Hrlop) 2op) o, i, p) =0 (20)
or r or ,uorm "

Considering the displacement regularity conditions of w; at r =0 and w; at » — oo, the solutions of Eq.
(19) can be expressed as

Nr,p) =4 p)h(yr), 0<r<a, (21)

V3(r7 C7p) :A6(Cap)K1(V3r)u r>c (22)

where
>
=4/ +p1p V3=\/C2+p;—p- (23)
3

and I( ) are the modified Bessel functions of the first and second kinds, respectively.
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The solution to Eq. (20) will be given for two special cases. The first one is for » = m, and the second one
for n = m — 2. The first case implies that the shear modulus and the mass density of the interphase change
in the same way, but the second case allows them to change separately. The solutions of Eq. (20) at these
two cases can be expressed in unified forms as

Va(r, o p) = r P Aa(C ) (par) + As(C, p)K(r)], @ <r < b, (24)
(r,op) = 1 "PlAa(C p)p(7ar) + As(L,p)Ky(yar)], b <r<ec, (25)
where
2
=142 5 =2 +P7 whenn=m, (26)
2 Ho
p= <1+ﬂ)2+p0_p2 7, ={ whenn=m-—2. (27)
2 ,u() ) 2 )

From Egs. (18) and (21)—(25), we can obtain the displacements in the Laplace domain

witap) =5 [ A@PnGne T 0<r<a (28)
Wiap) =g [ U0 +ACPR G a<r<b, (29)
wi(nzp) =5 [ PG + A PR AL b<r < (30)
wi(r,z,p) = % /: As(C,p)Ki(psr)e ™ dE,  r> e (31)

Subsequently, the shear stresses 7, and 77, in the Laplace transform domain can be obtained from Eq.
(4). The stress components 1%, are listed as follows:

1 o v
(G =ty | niCpbre =d 0<r<a (32)

—00

(€ = 10 o [ m /20 e+ 1y AEp) + (14 m 20Ky

o]

+ yzKl/,(yzr)]A3(C,p)}e’igzdC, a<r<b, (33)

(€ = 1 o [ m /20 e+ 1y AE D) + (U4 m 20Ky

o]

+ 1Ky (1or)4s(Gp)ye 9 dE, b <r <, (34)

1 o .
(T9)s = s / 1346 (L p)Ka(ysr)e = dE, ¢ <7 < +o0. (35)
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4. Derivation of the singular integral equation

In the Laplace domain, the boundary and interface conditions become

wi(a ,z,p) =wy(a*,z,p), —oo<z< o0 (36)
(to)i(a”,z,p) = (1y),(a",z,p), —00 <z < o0, (37)
wy(¢™,z,p) = wi(c",z,p), —o0 <z< o0, (38)
(To)a(c™2,p) = (T)5(c",2,p),  —00 <z < o0, (39)
(T0)2(b7,2,p) = (139),(b",2,p),  —00 <z < o0, (40)
wi(b™,z,p) = wi(b",z,p), < |z] < o0, (41)
(To)a(byz,p) = —1(2)/p, —I<z<IL. (42)

In order to reduce the problem into an integral equation, we first define the following dislocation density
function,

g(z,p) = E[wy(b",z,p) —wi(b™,z,p)], —I<z<l. (43)

Then substituting Egs. (28)—(35) into the continuity conditions (36)—(40) and the dislocation density defi-
nition (43), and taking proper Fourier inverse transform and considering the Eq. (41), we can obtain six
simultaneous equations for the six unknown functions 4,({, p),4>(¢,p), ..., 46({,p) in terms of the un-
known function g. Finally, substituting 44({, p) and 45({, p) into Eq. (34) and using the boundary condition
(42), we obtain

_ 1 *© 1 A (zvp) ! 1l (s—. T(Z)
m/2 - Al i{(s—2) = 7
Hmb)b o LA p) /,zg(s’p)eé dde=-7, e

after a complicated treatment, where A({,p) and A({, p) are listed in Appendix A.
Noting that

m/2
— lim lAl(Cap) :b ,
t—+00 { A(¢,p) 2

we can separate the singular part of the integral equation (44) by adding and subtracting A from the integral
kernel. Thus we obtain

2 —m/ 00 i —m/ i o)
T [0 [ o peacas s B [ st pacas

(45)

—0 ! 2TCI A(g7
(2)
=— . 46
pio(b) (40
By using the formula of Riemann—Lebesgue (Churchill and Brown, 1978), we have
00 ! !
/ sgn({) / g(s,p)ett=dlds = 2i / gs(s—’p) ds. (47)
—00 —1 -1 §$—2Z

Considering the functions A({, p) and A,((, p) are even functions about the variable {, we have
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11 A p) } it (s— [T (1A p) p
- — Jsgn(Q) e de = 21/ - — A )sin(s{ —z{)d¢. 48
/,m {c Ay 0 o \LACD) (s (4

Substituting Egs. (45), (47) and (48) into Eq. (46), we obtain a singular integral equation with a Cauchy
kernel

1 ["g(s,p) 1! )
2n /4 §—z ds +E /4R<S7Z7p)g(&p) ds = P (b) 7 (49)
where
00 —m/2
R(s,z,p) = /0 (b ; il((fﬁ)—%)sm(sg—zg)dc. (50)

The single-valued condition of g(s,p) can be given from the definition of g(s, p),

[ g(s,p)ds = 0. (51)

li

5. Dynamic stress intensity factor

Following the numerical method for singular integral equations (Erdogan, 1975) and normalizing the
integral interval by the following transformation of variables,
s=16 2=, (52)

the integral equations (49) and (51) can be rewritten as

(L S R ()
— ———+R(&n,p)|G(& p)dE = — , 53
2 |3 R o pas = - 2 (53)
!
| arnac=o. (54
-1
where
R(&n.p) = IR(IE, In, p), (55)
G(&,p) = g(l&,p), (56)
™(n) = t(ln). (57)
Considering the singularity at the crack tip, we assume that
Gép 1
G(&,p) = . 58
€ == (58)

Expanding G(¢,p) in the forms of Chebyshev polynomials
G(&p) =D BTi(9), (59)
=0

and using the properties of the polynomials, we obtain a system of equations,
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Zl

i=1

G(&,p) _ _?(171')
k - #Obm7

R(Ei1;,p) (60)

1
2¢
k
TE

where i =1,2,...,k, j=1,2,...,k—1 and &, 5, are the roots of the Chebyshev polynomials of the first
and second kinds, respectively,

2i—1
g“,-cos( le n>, i=1,2,...,k,

11j:cos<%1t>7 j=12,...k—1.

After solving the system of linear algebraic equations (60) and (61), the unknown function G(&, p) can be
obtained.
Defining the stress intensity factor in the Laplace domain as

(62)

KI*II(lap) = ZILI}} V 2(Z - 1)(1:0)2(b’27p)a (63)
Kin(—1.p) = lim /AT =2)(5})a(b.2.p), (64)

then from Egs. (34), (45), (58) and (59) and using the following property of the Chebyshev polynomials
(Erdogan and Wu, 1995)

Ue-1(n), <1, k=1,
l /l Tk(f)dé _ k 1(’1) e . |1/I| (65)
Lo s () ws ks
we obtain
. 1 ~G(,
Ky (l,p) = _Eﬂob Vi ( p)a (66)
p
* 1 m 6(_17p)
Kin(=1,p) =5 ub"VI—=—=. (67)
p
From the Laplace inversion
1
1) =55 | 1 w)e"a. (68)
where Br denotes the Bromwich path of integration, the DSIF in the time domain can be obtained by
_ " G(1,p)
KIII(la t) - b \/_27_[1 P e dpa (69)
G(

_1,
Kin(—1.0) = 3 o™V —7ﬂww. (70)
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The Laplace inverse transformations in Egs. (69) and (70) can be carried out by the numerical method
provided by Miller and Guy (1966). For example, the function G(1,p) is first evaluated at some discrete
points

p=(0+q)d, ¢=012..., (71)
then the Laplace inverse transformation can be approximately calculated by
L [6p),
2_m/ p Zcp [2exp (—6t) — 1], (72)

where P;( ) is the Legendre polynomial and the coefficients C; are determined from the following equations

5(1 Noglg—1)...[g—=(—1)]
Zqul q+2) (61+j+1)cj' 73)

J=

6. Results and discussion

To place the developed solutions in perspective, we now consider the cylindrical crack with a length
I/a =1 and a crack surface loading t(z,¢) = 1oH(¢). After solving the system of equations (53) and (54),
and accomplishing the Laplace inversion (69) and (70) by the numerical procedure developed by Miller and
Guy (1966), we obtain the DSIFs Ky (/,¢) and K (—1,¢) for several different cases of variations of us/p;,
¢/a, b/a and p;/p,. In these numerical procedures, we take the number of integrating points £ = 31 for the
numerical solution of singular integral equations (53) and (54) and the parameters 6 = 0.5, N = 6 in the
numerical procedure of Laplace inversion. Because of G(—1,p) = —G(1,p) in this symmetric loading con-
dition, we have Ky;1(—/,¢) = Kin(Z,¢) and then they are written as Ky (¢). The results shown in Figs. 2-5 are
the variations of the normalized DSIF Ky (¢)/ 79v/1 with respect to cat/l, where ¢o1 = (1, /p 1)1/ % is the shear
wave velocity in material-I.

From Figs. 2-5 a general feature of the curves is observed: the DSIFs rise rapidly and reach a peak, then
reduce gradually and tend to their respective static values. The peak values appear at about ¢y2// = 2.0 and
are higher than their respective static values about 20%.

Fig. 2 shows the effect of crack position in the FGM interlayer, i.e. b/a, on the variation of the nor-
malized DSIF Ky (¢)/toV/1 with cyit/1, at ps/p, = u3/p; = 0.2 and c/a = 1.25. Tt is observed that the
Km(t)/ 70V/1 tends to decrease monotonically with increasing b/a.

Fig. 3 displays the effect of FGM interlayer thickness, i.e. ¢/a, on the variation of Ky (¢)/to\/I while the
crack is located at the position of 5/a = 1.15 and p;/p; = u3/1; = 0.2. It indicates that the DSIF increases
with increasing ¢/a. From m = In(y3/p,)/1n(c/a) of the Eq. (3), the increase of ¢/a implies the decrease of
the absolute value of the exponent m. In other words the increase of ¢/a means the decrease of the material
gradient. Thus we can conclude that increasing the FGM gradient is beneficial to the decrease of the DSIF.

The effect of the stiffness ratio p;/u, on the variation of the DSIF is shown in Fig. 4. The other pa-
rameters are chosen as ¢/a = 1.5, b/a = 1.15 and p;/p, = u;/p,. It can be seen that the Ky (¢)/oV/1 in-
creases when the ratio u;/u, increases. For a definite value of ¢/a, the increase of p;/u, from 0.2 to 1.0
results in a decrease of the absolute value of the exponent m. As such, we can also conclude that increasing
the FGM gradient is helpful to the reduction of the DSIF. This conclusion is consistent with that deduced
from Fig. 3.

Fig. 5 displays the effect of p;/p, on the DSIF. The results for p;/p, = 13/, are from the solvable case
of gradient exponents n = m and the results for p;/p, < p;/u, are from the solvable case of gradient ex-
ponents n = m — 2. It can be seen that the ratio of p;/p, mainly has effect on the peak value of the DSIF
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2.0
uy/n,=0.2, c/a=1.25
1.6
1.2
\Po
=)
% 0.8
N
—————— b/a=1.10
0.4+ - b/a=1.15
e b/a=1.20
0.0 ; ; : . .
0 3 6 9 12 15 18
c, t/1

Fig. 2. The effect of the crack position on the normalized DSIF.

2.0
16l N HwT02.Da=115
~ 12 § Seao T
N
£
Ko {
F 084/
c/a=1.25
oadl - c/a=1.50
———————— c/a=2.00
0.0 T T T T T
3 6 9 12 15 18

c, t/1

Fig. 3. The effect of the FGM interlayer thickness on the normalized DSIF

and the decrease of p;/p, results in the decrease of the peak value of DSIF. However, this effect is not
significant.

7. Conclusions
This paper considers the problem of a cylindrical crack located in the FGM interlayer between two co-

axial elastic dissimilar homogeneous cylinders under torsional impact loading. The shear modulus and the
mass density of the FGM interlayer are assumed to vary continuously between those of the two coaxial
cylinders. The dynamic elastic field and the DSIF are solved by using the techniques of integral transforms
and singular integral equation. The DSIF is found to rise rapidly to the peak and then reduce and tend to the
static value. The peak values are higher than their respective static values about 20%. The influences of the
crack location, the FGM interlayer thickness and the relative magnitudes of the adjoining material prop-
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~ 12
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% 084 — /=02
i Holh,=
------ K/, =0.5
o4ff 7T Mo/, =0.8
R py/u,=1.0
0.0 : - : . .
0 3 6 9 12 15 18

Fig. 4. The effect of the shear modulus ratio on the normalized DSIF.

2.0
. c/a=1.5, b/a=1.15
1.6+ N\
=
1.2
-y
=2
M — 1,/1,=0.2, p,/p,=0.2
0.8+ — u,/n,=0.2, p,/p,=0.089
————— 1,/1,=0.5, p,/p,=0.5
17 --------- ny/1,=0.5, p,lp,=0.222
0.00 T T T T T
0 3 6 9 12 15 18
c, t/1

Fig. 5. The effect of the mass density ratio on the normalized DSIF.

erties are investigated. Three conclusions are deduced from the results: (i) the DSIF decreases when the
cylindrical crack is far away from the axial center; (ii) the DSIF also decreases with decreasing thickness of
the FGM layer; and (iii) the DSIF can be greatly reduced by increasing the gradient of the FGM; (iv) the
peak value of DSIF can also be reduced by decreasing the difference of mass density of the adjoining ma-
terials.
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Appendix A

The coefficients A({, p) and A(({,p) in Eq. (43) are

A(L,p) = (dsader — dside>)[(dardiy — diido) (dsadas — dipdss) + (diidos — dordys)(daidas — dadss)]
AL, p) = [dsa(diidny — dardyn) — dsi (diidas — dardy3))[dsi (daadas — dandss) — dsy(daidas — dardss)]

where

diy =1 (y,a), dpp = —afm/zlli(”ha% dyz = _aﬂn/zKli(72a)7 dy = mnh(na),
dyy = — iy (@)a"?[—(1 4+ m/2)Is(y,a)/a + 7214(7,a)],

dyy = — iy (@)a [ (1 4+ m/2)K;(p,a) Ja + 7K (,a)],

s = ¢ " ly(ne), dyy = ¢ "PKy(10), ds = —Ki(730),

dyy = po(c)e P [=(1+ m/2)I5(7,¢) /¢ + 11} (720)],

diy = o ()™ [—(1 + m/2)Ky(psc) Jc + 72K (720)],

diz = p1373K:(73¢),

dsy = —(1+ m/2)I5(7,b) /b + p,15(7,b),

dsy = —(1 +m/2)Ky(psb) /b + 1,K}(1,b),

der = b~ 15(7,b), dey = b™"Ky(1,b).
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